A Surprisingly Simple Way of Reversing Trace Distance via Entanglement
نویسنده
چکیده
Trace distance (between two quantum states) can be viewed as quantum generalization of statistical difference (between two probability distributions). On input a pair of quantum states (represented by quantum circuits), how to construct another pair, such that their trace distance is large (resp. small) if the original trace distance is small (resp. large)? That is, how to reverse trace distance? This problem originally arose in the study of statistical zero-knowledge quantum interactive proof. We discover a surprisingly simple way to do this job. In particular, our construction has two interesting features: first, entanglement plays a key role underlying our construction; second, strictly speaking, our construction is non-black-box.
منابع مشابه
Quantum interactive proofs and the complexity of entanglement detection
This paper identifies a formal connection between physical problems related to entanglement detection and complexity classes in theoretical computer science. In particular, we show that to nearly every quantum interactive proof complexity class (including BQP, QMA, QMA(2), QSZK, and QIP), there corresponds a natural entanglement or correlation detection problem that is complete for that class. ...
متن کاملEntanglement of an Atom and Its Spontaneous Emission Fields via Spontaneously Generated Coherence
The entanglement between a ?-type three-level atom and its spontaneous emission fields is investigated. The effect of spontaneously generated coherence (SGC) on entanglement between the atom and its spontaneous emission fields is then discussed. We find that in the presence of SGC the entanglement between the atom and its spontaneous emission fields is completely phase dependent, while in absen...
متن کاملA new operational interpretation of relative entropy and trace distance between quantum states
In this paper we present a new operational interpretation of relative-entropy between quantum states in the form of the following protocol. P: Alice gets to know the eigen-decomposition of a quantum state ρ. Bob gets to know the eigen-decomposition of a quantum state σ. Both Alice and Bob know S (ρ‖σ) def = Trρ log ρ − ρ log σ, the relative entropy between ρ and σ and an error parameter ε. Alic...
متن کاملVoltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy
The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...
متن کاملCoherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System
The time evaluation of quantum entropy in a four-level double- type atomic system is theoretically investigated. Quantum entanglement of the atom and its spontaneous emission fields is then discussed via quantum entropy. It is found that the degree of entanglement can be increased by the quantum interference induced by spontaneous emission. The phase dependence of the atom-field entanglement is...
متن کامل